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Abstract

For a uniform circular shaft carrying multiple concentrated elements (such as rotary inertias and/or
torsional springs) with arbitrary magnitudes and locations, a lot of existing techniques may be used to
obtain its ‘‘approximate’’ natural frequencies and mode shapes, but this is not true for the ‘‘exact’’
solutions. The purpose of this paper is to present some information in this aspect. Because the classical
analytical method is lengthy and tedious for the title problem if the total number of the attached
concentrated elements is larger, this paper adopts the numerical assembly method (NAM) to tackle the
problem. In which, the ‘‘left’’ side and the ‘‘right’’ side of each attaching point together with the ‘‘left’’ end
and the ‘‘right’’ end of a uniform circular shaft are considered as the nodal points, the associated
integration constants are considered as nodal displacements and each of the associated coefficient matrices
is considered as the element stiffness matrix of a shaft element, then the assembly technique of the direct
stiffness matrix method for the conventional finite element method (FEM) is used to obtain the ‘‘overall’’
coefficient matrix [B]. Any trial value of oj that renders the value of the determinant jBj vanishes denoting
one of the eigenvalues of the uniform circular shaft carrying multiple concentrated elements, and the
substitution of the associated integration constants into the relevant eigenfunctions determines the
corresponding mode shape.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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To confirm the reliability of the presented algorithm, all the numerical results obtained from the NAM
were compared with the corresponding ones obtained from the published literature or the FEM and good
agreement was achieved.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In earlier years, the torsional vibration problem was solved using the Holzer method [1–6].
After the advent of computers, the last problem was tackled by the more effective transfer matrix
method and the finite element method (FEM) [7–9]. The natural frequencies and mode shapes
obtained from the above-mentioned methods are the ‘‘approximate’’ ones, until 1975 (and 1979),
Gorman [10] (and Blevins [11]) presented the ‘‘exact’’ expressions for the torsional frequencies and
mode shapes of a ‘‘uniform’’ shaft carrying a single rotary inertia (or/and torsional spring) with
various non-classical boundary conditions. Ref. [12] discussed the ‘‘exact’’ solutions for the
torsional frequencies and mode shapes of the generally constrained shafts and piping. As for the
‘‘exact’’ solutions of the torsional vibration of uniform shafts carrying multiple concentrated
elements at arbitrary locations, the information concerned is rare and this is one of the reasons
why the problem in this aspect is studied. In this paper, the numerical assembly method (NAM)
[13–15] was used to perform the torsional vibration analysis of a ‘‘uniform’’ circular shaft carrying
multiple concentrated elements (rotary inertias or/and torsional springs) with arbitrary
magnitudes and locations.
From the following sections of this paper, one finds that the eigen equation of the title problem

takes the form [B]{C̄} ¼ {0}. Since the order of the overall coefficient matrix [B] is p ¼ 2nþ 2,
with n being the total number of concentrated attachments, the order of [B] is 4 for one
attachment, 6 for two attachments, y, and 2nþ 2 for n attachments. It is evident that the explicit
expression for the eigen equation [B]{C̄} ¼ {0} will become lengthy and complicated for the cases
with larger n, hence the literature relating to the exact solution for the torsional natural
frequencies of a uniform circular shaft carrying more than ‘‘two’’ concentrated attachments is
rare. Because the NAM presented in Refs. [14,15] was found to easily tackle the free ‘‘bending’’
vibration problem of the ‘‘uniform’’ and ‘‘non-uniform’’ beams carrying any number of
concentrated attachments, this paper tries to use the same approach to determine the exact
natural frequencies of the uniform circular shafts carrying multiple concentrated elements. The
key point of the NAM is as follows: If the ‘‘left’’ side and the ‘‘right’’ side of each attaching point
together with the ‘‘left’’ end and the ‘‘right’’ end of the uniform circular shaft are considered as the
nodal points, and the associated integration constants, Cvi ðv ¼ 12n; i ¼ 122Þ, are considered as
nodal displacements, then the associated coefficient matrix, [BL], [Bv] (v ¼ 1–n) or [BR], may be
considered as the element stiffness matrix of a shaft element, so that the conventional assembly
technique of the direct stiffness matrix method for the FEM [16] may be used to obtain the
‘‘overall’’ coefficient matrix [B]. Any trial value of oj that renders the value of the determinant jBj
vanishes denoting one of the eigenvalues of the uniform circular shaft carrying multiple
concentrated elements.
To show the reliability of the introduced approach, the lowest five natural frequencies and some

of the corresponding mode shapes of twisting angles of a uniform circular shaft carrying five
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concentrated elements were calculated. Two boundary conditions were studied: clamped–free and
clamped–clamped. It has been found that the agreement between the present results and the FEM
results is good.
2. Theoretical analysis of the problem

In this section, the coefficient matrices for the associated integration constants are derived and
the technique for arriving at the overall coefficient matrix is introduced. The last matrices and
technique are the key points for the NAM adopted in this paper.
2.1. Eigenfunctions of the constrained uniform circular shaft

Fig. 1 shows a cantilevered circular shaft carrying n concentrated elements. The whole
cantilevered circular shaft with length L is subdivided into ðnþ 1Þ segments by the attaching point
n located at x ¼ xn (n ¼ 1,2,y,n), where denotes the nth ‘‘attaching point’’ and (n) denotes the
nth ‘‘shaft segment’’. In addition, the ‘‘left’’ end and the ‘‘right’’ end of the shaft are denoted by
and , respectively.
The equation of motion for a torsional uniform circular shaft is given by [10,12]

GIp

q2yðx; tÞ
qx2

� J̄p

q2yðx; tÞ
qt2

¼ Tðx; tÞ, (1)

where G is the shear modulus of shaft material, Ip is the (polar) moment of inertia of the cross-
sectional area about the rotational (x) axis, J̄p is the mass moment of inertia about the rotational
(x) axis per unit length, T(x,t) and y(x,t) are, respectively, the torsional moment and the
corresponding twisting angle at position x and time t. For a circular shaft of diameter d one has
Ip ¼ pd4/32.
x

RkRν−1 kRnL
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Fig. 1. A cantilevered circular shaft carrying n concentrated elements.
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For free vibration of the shaft, one has

yðx; tÞ ¼ ȳðxÞeiot, (2)

where ȳðxÞ is the amplitude of twisting angle y(x,t) and o is the circular frequency of the torsional
shaft.
Substituting of Eq. (2) into Eq. (1) and setting T(x,t) ¼ 0 will lead to

d2ȳðxÞ
dx2

þ
J̄po2

GIp

ȳðxÞ ¼ 0 (3a)

or

d2ȳðxÞ
dx2

þ b2ȳðxÞ ¼ 0, (3b)

where

b2 ¼
J̄po2

GIp

(4a)

or

o ¼ ðbLÞ

ffiffiffiffiffiffiffiffiffiffi
GIp

J̄pL2

s
. (4b)

The general solution of Eq. (3b) takes the form

ȳðxÞ ¼ C1 sin bxþ C2 cos bx. (5)

If the following non-dimensional parameter is introduced

x ¼ x=L, (6)

then Eq. (5) becomes

ȳðxÞ ¼ C1 sin bxþ C2 cos bx, (7)

where Ci (i ¼ 1–2) are the integration constants.
Eq. (7) represents the eigenfunction for the twisting angle of the shaft. Once the natural

frequencies oj (j ¼ 1,2,y) and the constants, Ci (i ¼ 1–2), are determined from the next sections,
one may obtain the value of ȳjðxÞ. The latter are the mode shapes of the shaft corresponding to the
natural frequency oj.
For ‘‘the nth shaft segment’’, from Eq. (7) one has

ȳnðxnÞ ¼ Cn1 sinðbxnÞ þ Cn2 cosðbxnÞ (8)

with

xv ¼ xv=L. (9)
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2.2. Coefficient matrix [Bn] for the nth attaching point

Compatibility for the twisting angles and twisting moments at the attaching point requires that

ȳ
L

n ðxnÞ ¼ ȳ
R

n ðxnÞ, (10)

dȳ
L

v ðxnÞ
dx

�
b2

I�0v

ȳ
L

v ðxnÞ þ k�Rvȳ
L

v ðxnÞ ¼
dȳ

R

v ðxnÞ
dx

(11)

with

k�Rn ¼
kRnL

GIp

, (12)

I�0n ¼
J̄pL

I0v

, (13)

where kRn and I0n represent the nth set rigidly attached torsional spring constant and rotary
inertia.
The substitution of Eqs. (8) and (9) in Eqs. (10) and (11) leads to

Cn1 sinðbxnÞ þ Cn2 cosðbxnÞ � Cnþ1;1 sinðbxnÞ � Cnþ1;2 cosðbxnÞ ¼ 0, (14)

Cn1 b cosðbxnÞ �
b2

I�0v

sinðbxnÞ þ k�Rv sinðbxnÞ
� �

� Cn2 b sinðbxnÞ þ
b2

I�0v

cosðbxnÞ � k�Rv cosðbxnÞ
� �

� Cnþ1;1 b cosðbxnÞ þ Cnþ1;2b sinðbxnÞ ¼ 0. ð15Þ

It is noted that, in Eqs. (10) and (11), the ‘‘left side’’ of the nth attaching point located at x ¼ xn
belongs to the segment (n) and the ‘‘right side’’ belongs to the segment (n+1), thus the associated
coefficients are represented by Cni and Cn+1,i (i ¼ 1–2), respectively, as may be seen from Eqs.
(14)–(15).
Writing Eqs. (14)–(15) in matrix form gives

Bn½ � Cnf g ¼ 0f g, (16)

where

Cnf g ¼ Cn1 Cn2 Cnþ1;1 Cnþ1;2
� �

¼ C̄2n�1 C̄2n C̄2nþ1 C̄2nþ2
� �

; (17a)

C̄2n�1 ¼ Cn1; C̄2n ¼ Cn2; C̄2nþ1 ¼ Cnþ1;1 C̄2nþ2 ¼ Cnþ1;2 (17b)

and

2n-1 2n 2nþ 1 2nþ 2

Bn½ � ¼
sinðbxvÞ cosðbxvÞ � sinðbxvÞ � cosðbxvÞ

b cosðbxvÞ �
b2

I�
0v

sinðbxvÞ þ k�Rv sinðbxvÞ �b sin ðbxvÞ �
b2

I�
0v

cosðbxvÞ þ k�Rv sinðbxvÞ �b cosðbxvÞ b sinðbxvÞ

2
4

3
5 2n

2nþ 1
.

ð17cÞ
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2.3. Coefficient matrix [BL] for the left end of the circular shaft

For a cantilever shaft with left end clamped, the boundary condition is

ȳð0Þ ¼ 0. (18)

From Fig. 1 one sees that the left end of the shaft, , coincides with the left end of the first shaft
segment (n ¼ 1), from Eqs. (8), (9) and (18) one obtains

C12 ¼ 0. (19)

Writing Eq. (19) in matrix form gives

BL½ � CLf g ¼ 0f g, (20)

where

1 2

½BL� ¼ ½0 1�1; ð21Þ

CLf g ¼ C11 C12f g ¼ C̄1 C̄2

� �
, (22)

where the [ ] and { } represent the rectangular matrix and the column vector, respectively, and

C̄1 ¼ C11; C̄2 ¼ C12. (23)

In Eq. (21) and the subsequent equations, the digits shown on the top side and right side of the
matrix represent the identification numbers of degrees of freedom (dof) for the associated
constants C̄i (i ¼ 1,2,y).

2.4. Coefficient matrix [BR] for the right end of the circular shaft

For a cantilever shaft with right end free, the boundary condition is

dȳð1Þ
dx
¼ 0. (24)

Since the right end of the shaft, , coincides with the right end of the ðnþ 1Þth segment
(n ¼ n+1), as one may see from Fig. 1, from Eqs. (8), (9) and (24) one obtains

b cosðbÞCnþ1;1 � b sinðbÞCnþ1;2 ¼ 0. (25)

Writing Eq. (25) in matrix form gives

BR½ � CRf g ¼ 0f g, (26)

where

2nþ 1 2nþ 2

BR½ � ¼ ½b cosðbÞ �b sinðbÞ�p; (27)

CRf g ¼ Cnþ1;1 Cnþ1;2

� �
¼ C̄2nþ1 C̄2nþ2

� �
, (28)
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C̄2nþ1 ¼ Cnþ1;1; C̄2nþ2 ¼ Cnþ1;2, (29)

p ¼ 2nþ 2. (30)

In the last equation, p represents the total number of equations. From the above derivations one
sees that from each attaching point for a concentrated element one may obtain two
(compatibility) equations and from each boundary ( or ) one may obtain one equation.
Hence, for a circular shaft carrying n concentrated elements, the total number of equations that
one may obtain for the integration constants Cni ðn ¼ 12n; i ¼ 122Þ is equal to 2nþ 2, i.e.,
p ¼ 2nþ 2 as shown by Eq. (30). Of course, the total number of unknowns ðCniÞ is also equal to
2nþ 2. From Eq. (8) one sees that the solution ȳnðxÞ for each shaft segment contain two unknown
integration constants Cni ði ¼ 122Þ, hence if a shaft carries n concentrated elements, then the total
number of the shaft segment is nþ 1 and thus the total number of unknown ðCniÞ is equal to
2ðnþ 1Þ ¼ 2nþ 2 ¼ p.
For a cantilever shaft with its right end free, the boundary condition is

ȳð1Þ ¼ C1 sin bþ C2 cos b ¼ 0 (31)

or in matrix form

BR½ � CRf g ¼ 0f g, (32)

where

2nþ 1 2nþ 2

½BR� ¼ ½sin b cos b�p: ð33Þ

The column vector {CR} is the same as that given by Eq. (28).

2.5. Overall coefficient matrix [B] of the entire circular shaft and the frequency equation

If all the unknowns Cni (n ¼ 1–n, i ¼ 1–2) are replaced by a column vector fC̄g with coefficients
C̄k (k ¼ 1,2, y, p) defined by Eqs. (17b), (23) and (29), then the matrices [BL], [Bn] and [BR] are
similar to the element property matrices (FEM) with corresponding identification numbers for the
dof shown on the top side and right side of the matrices defined by Eqs. (17c), (21) and (27). Based
on the assembly technique for the direct stiffness matrix method, it is easy to arrive at the
following coefficient equation for the entire vibrating system:

B½ � C̄
� �
¼ 0f g. (34)

The non-trivial solution of the problem requires that

Bj j ¼ 0, (35)

which is the frequency equation, and the half-interval technique [16] may be used to solve the non-
dimensional frequency parameters bj (j ¼ 1,2,y) and, in turn, the natural frequencies eigenvalues
oj. To substitute the value of bj into Eq. (34) one may determine the values of unknowns C̄k

(k ¼ 1,2,y, p). Among which, from Eq. (17b) one sees that C̄2n�1 ¼ Cn1, C̄2n ¼ Cn2,
C̄2nþ1 ¼ Cnþ1;1, C̄2nþ2 ¼ Cnþ1;2 (n ¼ 1–n), hence the substitution of Cni ði ¼ 122Þ into Eq. (8)
will define the corresponding mode shape ȳðjÞðxÞ. For a cantilever shaft carrying a (n ¼ 1) set of
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and two (n ¼ 2) sets of concentrated elements, the corresponding overall coefficient matrices [B](1)
and [B](2) were shown in Appendix A [see Eqs. (A.1), (A.2)]. From the lengthy expressions one
sees that the conventional explicit formulations are not suitable for a shaft carrying more than two
ðn42Þ sets of concentrated elements. However this is not true for the numerical assembly method
(NAM) adopted in this paper.
3. Numerical results and discussions

The dimensions and physical properties of the circular shaft studied in this paper are: shaft
length L ¼ 40 in, shear modulus of shaft material G ¼ 1.2� 107 psi, mass density of shaft material
r ¼ 0.283 lbm/in3, shaft diameter d ¼ 1 in. For convenience, two non-dimensional parameters for
each concentrated element were introduced: I�0n ¼ J̄pL

�
I0v and k�Rn ¼ kRnL

�
GIp, n ¼ 1,2,y,n. In

addition, the two-letter acronyms, CF and CC, were used to denote the clamped–free (CF) and
clamped–clamped (CC) boundary conditions of the shaft, respectively.

3.1. Comparing with the existing literature

In order to compare the results of NAM with the corresponding ones obtained by Gorman [10],
the CF and CC circular shafts without carrying any concentrated elements were studied first. The
lowest five non-dimensional frequency coefficients, bj (j ¼ 1–5), were shown in Table 1. It is
evident that the results of the NAM and those of Gorman [10] are in good agreement.
For the cantilever shaft carrying a single ‘‘torsional spring’’ located at x ¼ x/L ¼ 1.0 and 0.5,

respectively, Table 2(a) shows the lowest five non-dimensional frequency coefficients, bj (j ¼ 1–5),
obtained from the NAM and those from Gorman [10] for the non-dimensional torsional springs
k�Rn ¼ kRnL

�
GIp ¼ 0:1, 1.0 and 10.0, while Table 2(b) shows those for the non-dimensional rotary

inertia I�0n ¼ J̄pL
�

I0v ¼ 0:1, 1.0 and 10.0. Similarly, for the same cantilever shaft carrying a single
‘‘rotary inertia’’ located at x ¼ x/L ¼ 1.0 and 0.5, respectively, Tables 3(a) and (b) show the
similar information for the similar cases. It is also found that the values of bj (j ¼ 1–5) obtained
from the NAM are very close to those of Gorman [10].
For the cantilever shaft carrying ‘‘two’’ concentrated elements (one rotary inertia and one

torsional spring) at its free end with magnitudes of the non-dimensional torsional spring, k�Rn ¼
Table 1

The lowest five non-dimensional frequency coefficients bj (j ¼ 1–5) for the CF and CC uniform shafts without carrying

any concentrated elements

Boundary conditions Methods Non-dimensional frequency coefficients

b1 b2 b3 b4 b5

CF NAM 1.570796 4.712389 7.853982 10.995575 14.137167

Gorman [10] 1.570795 4.712391 7.853986 10.995571 14.137167

CC NAM 3.141593 6.283185 9.424777 12.566370 15.707963

Gorman [10] 3.141594 6.283188 9.424774 12.566369 15.707964

NAM ¼ numerical assembly method.
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Table 2

The lowest five non-dimensional frequency coefficients bj (j ¼ 1–5) for a cantilever shaft carrying a single ‘‘torsional

spring’’

k�R1 ¼
kR1L

GIp
Methods Non-dimensional frequency coefficients

b1 b2 b3 b4 b5

(a) located at x1 ¼ x1/L ¼ 1.0

0.1 NAM 1.631994 4.733512 7.866693 11.004661 14.144237

Gorman[10] 1.631996 4.733514 7.866691 11.004663 14.144237

1.0 NAM 2.028758 4.913181 7.978666 11.085538 14.207437

Gorman[10] 2.028753 4.913177 7.978667 11.085534 14.207442

10.0 NAM 2.862773 5.760558 8.708313 11.702678 14.733472

Gorman[10] 2.862776 5.760559 8.708312 11.702677 14.733469

(b) Located at x1 ¼ x1/L ¼ 0.5.

0.1 NAM 1.601997 4.722975 7.860343 11.000122 14.140703

Gorman[10] 1.601996 4.722977 7.860344 11.000122 14.140702

1.0 NAM 1.836597 4.815843 7.917052 11.040830 14.172433

Gorman[10] 1.836595 4.815840 7.917054 11.040826 14.172431

10.0 NAM 2.653662 5.454353 8.391346 11.408627 14.469869

Gorman[10] 2.653665 5.454351 8.391342 11.408627 14.469869

NAM ¼ numerical assembly method.

Table 3

The lowest five non-dimensional frequency coefficients bj (j ¼ 1–5) for a cantilever shaft carrying a single ‘‘rotary

inertia’’

I�01 ¼
J̄pL

I01

Methods Non-dimensional frequency coefficients

b1 b2 b3 b4 b5

(a) located at x1 ¼ x1/L ¼ 1.0

0.1 NAM 0.311053 3.173097 6.299059 9.435376 12.574323

Gorman[10] 0.311050 3.173098 6.299058 9.435379 12.574318

1.0 NAM 0.860333 3.425618 6.437298 9.529334 12.645287

Gorman[10] 0.860336 3.425617 6.437293 9.529336 12.645287

10.0 NAM 1.428870 4.305802 7.228110 10.200262 13.214185

Gorman[10] 1.428871 4.305799 7.228112 10.200260 13.214186

(b) located at x1 ¼ x1/L ¼ 0.5

0.1 NAM 0.432841 3.203935 6.314846 9.445948 12.582264

Gorman[10] 0.432837 3.203938 6.314849 9.445946 12.582268

1.0 NAM 1.076874 3.643597 6.578333 9.629560 12.722299

Gorman[10] 1.076869 3.643596 6.578332 9.629563 12.722300

10.0 NAM 1.496129 4.491480 7.495412 10.511670 13.541976

Gorman[10] 1.496127 4.491478 7.495413 10.511674 13.541977

D.-W. Chen / Journal of Sound and Vibration 291 (2006) 627–643 635
1:0 and the non-dimensional rotary inertia, I�0n ¼ 1:0, the lowest five non-dimensional frequency
coefficients bj (j ¼ 1–5) and the corresponding mode shapes of twisting angles ȳj(j ¼ 1–5) were
shown in Table 4 and Fig. 2, respectively. From Table 4 and Fig. 2 one sees that the lowest five
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Table 4

The lowest five non-dimensional frequency coefficients bj (j ¼ 1–5) for a cantilever shaft carrying ‘‘two’’ concentrated

elements (one rotary inertia and one torsional spring) at its free end

Concentrated elements Methods Non-dimensional frequency coefficients

b1 b2 b3 b4 b5

I�01 ¼ k�R1 ¼ 0:1 NAM 0.326231 3.173128 6.299064 9.435378 12.574324

Gorman[10] 0.326235 3.173127 6.299068 9.435379 12.574328

I�01 ¼ k�R1 ¼ 1:0 NAM 1.207793 3.448238 6.440954 9.530477 12.645779

Gorman[10] 1.207797 3.448235 6.440956 9.530479 12.645775

I�01 ¼ k�R1 ¼ 10:0 NAM 2.841770 5.599018 8.228049 10.836159 13.580900

Gorman[10] 2.841770 5.599022 8.228047 10.836163 13.580904
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1st mode by NAM

2nd mode by NAM

3rd mode by NAM

4th mode by NAM

5th mode by NAM
1st to 5th modes by Gormam [10]

Fig. 2. The lowest five mode shapes of twisting angles, ȳjðxÞ (j ¼ 1–5), for the cantilever shaft carrying ‘‘two’’

concentrated elements (one rotary inertia and one torsional spring) at its free end with magnitudes of the non-

dimensional torsional spring k�Rn ¼ 1:0 and the non-dimensional rotary inertia I�0n ¼ 1:0.

D.-W. Chen / Journal of Sound and Vibration 291 (2006) 627–643636
non-dimensional frequency coefficients and the corresponding mode shapes of twisting angles
obtained from the NAM are in good agreement with those obtained from Gorman [10].
According to the above comparisons, it is believed that the NAM is an effective technique for the
title problem.
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Table 5

The locations and magnitudes of the three sets of concentrated attachments.

Sets of concentrated

attachments

Locations of rotary inertia

and/or torsional spring

xj ¼ xj/L

Magnitudes of torsional

spring k�Rv ¼ kRvL
�

GIp

Magnitudes of rotary inertia

I�0v ¼ J̄pL
�

I0v

x1 x2 x3 x4 x5 k�R1 k�R2 k�R3 k�R4 k�R5 I�01 I�02 I�03 I�04 I�05

k�Rv 0.1 0.3 0.5 0.7 0.9 1.0 1.0 1.0 1.0 1.0

I�0v 0.1 0.3 0.5 0.7 0.9 1.0 1.0 1.0 1.0 1.0

k�Rn ¼ I�0n 0.1 0.3 0.5 0.7 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 6

The lowest five natural frequencies for the shaft carrying five torsional springs with locations and magnitudes shown in

Table 5

Boundary conditions Methods Natural frequencies (rad/s)

o1 o2 o3 o4 o5

CF NAM 442.38625 847.76398 1328.39161 1825.68890 2328.35966

FEM 442.32918 847.57916 1328.07013 1824.94767 2327.31655

(0.0129%) (0.0218%) (0.0242%) (0.0406%) (0.0448%)

CC NAM 625.96502 1084.57763 1575.94569 2076.75296 2607.94970

FEM 625.85485 1084.38565 1575.66517 2076.31684 2607.38899

(0.0176%) (0.0177%) (0.0178%) (0.0210%) (0.0215%)

Note: The percentage differences between ojNAM and ojFEM shown in the parentheses ( ) were determined with the

formula: ej ¼ (ojNAM–ojFEM)� 100%/ojNAM.
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3.2. Free vibration analysis of the shaft carrying five torsional springs

Since the information regarding the exact natural frequencies and mode shapes of a uniform
shaft carrying multiple concentrated elements has not been found yet, the numerical results of the
current and the next subsections are compared with those obtained from the conventional FEM
to confirm their reliability. For the CF and CC shafts carrying five torsional springs with locations
and magnitudes shown in Table 5, the lowest five natural frequencies, oj (j ¼ 1–5), were shown in
Table 6 and the corresponding mode shapes of twisting angles, ȳjðj ¼ 1� 5Þ, were shown in Fig. 3.
In the last figure, the dashed lines represent the mode shapes of twisting angles obtained from the
present NAM and the solid lines represent those obtained from the conventional FEM. It is
evident that they are in good agreement. For convenience of comparison, the free torsional
vibration analysis of a uniform shaft without carrying any concentrated elements was also made
by using NAM. Table 9 in Appendix B shows the lowest five natural frequencies, ~oj ¼ (j ¼ 1–5),
with the CF and CC boundary conditions and Figs. 5(a)–(b) show the corresponding mode shapes
of twisting angles. A comparison between Tables 9 and 6 reveals that the natural frequencies of
the shaft ‘‘without’’ carrying any concentrated elements are smaller than the corresponding ones
of the shafts carrying ‘‘five’’ torsional springs. The difference between oj and ~oj, Doj ¼ oj � ~oj,
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Table 7

The lowest five natural frequencies for the shaft carrying five rotary inertia with locations and magnitudes shown in

Table 5

Boundary conditions Methods Natural frequencies (rad/s)

o1 o2 o3 o4 o5

CF NAM 104.09671 304.98929 482.88004 619.40419 694.81096

FEM 104.07651 304.92280 482.77525 619.19421 694.57263

(0.0194%) (0.0218%) (0.0217%) (0.0339%) (0.0343%)

CC NAM 206.38625 397.88841 557.56443 665.88763 704.63713

FEM 206.36478 397.84384 557.43061 665.69385 704.36091

(0.0104%) (0.0112%) (0.0240%) (0.0291%) (0.0392%)
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Fig. 3. The lowest five mode shapes of twisting angles, ȳjðxÞ (j ¼ 1–5), for the uniform shaft carrying five torsional

springs with locations and magnitudes shown in Table 5 in the support conditions: (a) CF and (b) CC, obtained from

the present numerical assembly method (NAM) and the conventional finite element method (FEM).
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decreases with the increasing mode number j. But the lowest five mode shapes of twisting angles of
the shafts carrying ‘‘five’’ torsional springs shown in Fig. 3 look like those of the shaft ‘‘without’’
carrying any concentrated elements shown in Figs. 5(a)–(b). The five ‘‘identical’’ torsional springs
‘‘uniformly’’ distributed along the shaft length should be the main reason arriving at the last
result.
The percentage differences between ojNAM and ojFEM shown in the parentheses ( ) of Table 6

were calculated with the formula: ej ¼ (ojNAM�ojFEM)� 100%/ojNAM, where ojNAM and ojFEM

denote the jth natural frequencies of the shafts carrying ‘‘five’’ torsional springs obtained from
NAM and FEM, respectively. From Table 6 one finds that the maximum value of ej is
e5 ¼ 0.0448% (for the CF shaft), hence the accuracy of the NAM is good.
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3.3. Free vibration analysis of the shaft carrying five rotary inertia

Instead of the torsional springs, for the same shaft carrying five rotary inertia with locations
and magnitudes shown in Table 5, the lowest five natural frequencies, oj (j ¼ 1–5), of the shaft
were shown in Table 7. Comparing the results of Tables 7 and 9, one sees that the lowest five
natural frequencies of the shaft carrying ‘‘five’’ rotary inertia, oj (j ¼ 1–5), shown in Table 7 are
smaller than the corresponding ones of the same shaft ‘‘without’’ carrying any concentrated
elements, ~oj (j ¼ 1–5), shown in Table 9. Besides, the maximum percentage difference between
ojNAM and ojFEM shown in the parentheses ( ) of Table 7 is found to be e5 ¼ 0.0392% (for the CC
shaft). Since the corresponding mode shapes of twisting angles for the shafts carrying ‘‘five’’
rotary inertia are almost coincident with the ones for the shaft ‘‘without’’ carrying any
concentrated elements (cf. Fig. 5), the former were not shown in this paper.

3.4. Free vibration analysis of the shaft carrying five torsional springs and five rotary inertia

Finally, the same shaft carrying five torsional springs and five rotary inertia is studied. For the
case of ‘‘five’’ torsional springs and ‘‘five’’ rotary inertia with their locations and magnitudes as
shown in Table 5, the lowest five natural frequencies of the shaft, oj (j ¼ 1–5), were shown in
Table 8. From Tables 8 and 9, it is seen that the lowest five natural frequencies of the shaft
carrying ‘‘five’’ torsional springs and ‘‘five’’ rotary inertia are smaller than the corresponding ones
of the shaft ‘‘without’’ carrying any concentrated elements. Besides, the maximum percentage
difference between ojNAM and ojFEM shown in the parentheses ( ) of Table 8 is found to be
e5 ¼ 0.0616% (for the CC shaft). The corresponding mode shapes of twisting angles for the shaft
carrying ‘‘five’’ torsional springs and those carrying ‘‘five’’ rotary inertia are also almost identical
with the ones for the shaft ‘‘without’’ carrying any concentrated elements (cf. Fig. 5) and not
shown here.

3.5. Influence of magnitude and location of the single torsional spring kR

If k�R ¼ kRL
�

GIp, then the influence of location of the single torsional spring kR with
magnitudes k�R ¼ 1:0, k�R ¼ 5:0 and k�R ¼ 10:0, respectively, on the lowest three natural
Table 8

The lowest five natural frequencies for the shaft carrying five rotary inertia and five torsional springs with locations and

magnitudes shown in Table 5

Boundary conditions Methods Natural frequencies (rad/s)

o1 o2 o3 o4 o5

CF NAM 181.55200 339.90823 506.37430 638.56085 712.37468

FEM 181.51496 339.83243 506.23302 638.34310 712.12891

(0.0204%) (0.0223%) (0.0279%) (0.0341%) (0.0345%)

CC NAM 254.69619 425.63206 578.40376 684.01115 722.02369

FEM 254.66893 425.58353 578.26378 683.81141 721.57892

(0.0107%) (0.0114%) (0.0242%) (0.0292%) (0.0616%)
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Fig. 4. Influence of magnitude and location of the single torsional spring on the lowest three natural frequencies of the

cantilever shaft: (a) first natural frequency o1; (b) second natural frequency o2; and (c) third natural frequency o3.
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frequencies of the cantilever shaft carrying a single ‘‘torsional spring’’ was shown in Figs. 4(a) for
the first frequency o1, 4(b) for the second one o2 and 4(c) for the third one o3. From Fig. 4(a) one
sees that the first natural frequency (o1) of the cantilever shaft increases when the distance
between the single torsional spring kR and the left clamped end of the shaft, xR (or xR ¼ xR/L, L is
the shaft length), increases; for the non-dimensional torsional spring k�R ¼ 10:0, the maximum
frequency appears at the position xRE0.74L instead of the position xR ¼ 1.0L (at free end). From
Figs. 4(b) and (c) one sees that, at any specified location of the single torsional spring kR, the value
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of o2 (or o3) also increases with increasing the magnitude of the single torsional spring kR, but the
influence of location of the single torsional spring on the second natural frequency o2 and the
third one o3 is more complicated. From the second and third mode shapes of twisting angles of
the cantilever shaft without carrying any concentrated elements shown in Fig. 5(a) one sees that
there exists one node at xE0.675L in the second mode shape and two nodes at xE0.4L and 0.8L,
respectively, in the third mode shape. This will be the reason why the second natural frequency
(o2) of the shaft carrying a single torsional spring for the case of k�R ¼ 1:0 is equal to that with
k�R ¼ 5:0 or k�R ¼ 10:0 when the torsional spring is located at xRE0.675L (or xR ¼ xR/LE0.675)
as one may see from Fig. 4(b). Similarly, when the torsional spring is located at node 1
withxR1E0.4L or node 2 with xR2E0.8L, the influence of the magnitude of the torsional spring
(k�R ¼ 1:0, 5.0 or 10.0) on the third natural frequency (o3) of the shaft carrying a single torsional
spring is nil as shown in Fig. 4(c). It is noted that the horizontal solid lines in Figs. 4(a)–(c) were
used to indicate the first, second and third natural frequencies of the cantilever shaft without
carrying any concentrated elements, respectively.
4. Conclusions
(1)
 For a uniform circular shaft carrying more than ‘‘two’’ concentrated elements, the exact
natural frequencies and the corresponding mode shapes of twisting angles can be easily
determined with the numerical assembly method (NAM). Comparing with the conventional
finite element method (FEM), one of the main advantages of NAM is that the solutions of
NAM are exact and those of FEM are approximate.
(2)
 If the total number of nodes for the rth mode shape is q and the distance between the ith node
and the left supporting end of the cantilever shaft is denoted by xci, then the influence of
magnitude of the torsional spring on the corresponding natural frequency or is nil, when the
torsional spring is located at x ¼ xci (i ¼ 1–q) (i.e., located at any of the nodes).
Appendix A

For a uniform cantilever shaft carrying a set of concentrated elements (a rotary inertia together
with a torsional spring) at x1 ¼ x1/L, the ‘‘explicit’’ expression for the overall coefficient
matrix [B](1) was given by Eq. (A.1), while for that carrying two sets of concentrated elements
at x1 ¼ x1/L and x2 ¼ x2/L, its overall coefficient matrix [B](2) was given by Eq. (A.2).

C̄1 C̄2 C̄3 C̄4

B½ �ð1Þ ¼

0 1 0 0

sinðbx1Þ cosðbx1Þ � sinðbx1Þ � cosðbx1Þ

r11 r21 �b cosðbx1Þ b sinðbx1Þ

0 0 b cos b �b sin b

2
666664

3
777775

1

2

3

4

, ðA:1Þ
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C̄1 C̄2 C̄3 C̄4 C̄5 C̄6

B½ �ð2Þ ¼

0 1 0 0 0 0

sinðbx1Þ cosðbx1Þ � sinðbx1Þ � cosðbx1Þ 0 0

r11 r21 �b cosðbx1Þ b sinðbx1Þ 0 0

0 0 sinðbx2Þ cosðbx2Þ � sinðbx2Þ � cosðbx2Þ

0 0 r12 r22 �b cosðbx2Þ b sinðbx2Þ

0 0 0 0 b cos b �b sin b

2
666666666664

3
777777777775

1

2

3

4

5

6

, ðA:2Þ

where

r11 ¼ b cosðbx1Þ �
b2

I�01
sinðbx1Þ þ k�R1 sinðbx1Þ,

r21 ¼ �b sinðbx1Þ �
b2

I�01
cosðbx1Þ þ k�R1 sinðbx1Þ,

r12 ¼ b cosðbx2Þ �
b2

I�02
sinðbx2Þ þ k�R2 sinðbx2Þ,

r22 ¼ �b sinðbx2Þ �
b2

I�02
cosðbx2Þ þ k�R2 sinðbx2Þ.
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Fig. 5. The lowest five mode shapes of twisting angles, ȳjðxÞ (j ¼ 1–5), for the shaft without carrying any concentrated

elements in the support conditions: (a) CF and (b) CC, obtained from NAM.
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Table 9

The lowest five natural frequencies, ~oj (j ¼ 1–5), for the shaft without carrying any concentrated elements obtained

from NAM

Boundary Conditions Natural frequencies (rad/sec)

~o1 ~o2 ~o3 ~o4 ~o5

CF 255.71565 767.14691 1278.57825 1790.00961 2301.44075

CC 511.43130 1022.86258 1534.29394 2045.72518 2557.15652
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Appendix B

The lowest five natural frequencies ~oj (j ¼ 1–5) and the corresponding mode shapes of twisting
angles, ȳjðxÞ (j ¼ 1–5), for the shaft without carrying any concentrated elements in the CF and CC
boundary conditions were shown in Table 9 and Figs. 5(a)–(b), respectively.
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